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ABSTRACT 

Coarse graining (CG) enables the investigation of molecular properties for larger systems and at longer timescales than 

the ones attainable at the atomistic resolution. Machine learning techniques have been recently proposed to learn CG 

particle interactions, i.e. develop CG force fields. Graph representations of molecules and supervised training of a graph 

convolutional neural network architecture are used to learn the potential of mean force through a force matching scheme. 

In this work, the force acting on each CG particle is correlated to a learned representation of its local environment that 

goes under the name of SchNet, constructed via continuous filter convolutions. We explore the application of SchNet 

models to obtain a CG potential for liquid benzene, investigating the effect of model architecture and hyperparameters on 

the thermodynamic, dynamical, and structural properties of the simulated CG systems, reporting and discussing 

challenges encountered and future directions envisioned.  
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1 INTRODUCTION 
Machine learning (ML) is having increasing impact in the physical sciences, engineering, and technology, addressing 

research problems that range from molecular reaction mechanisms to high-throughput screening of functional materials.  

One strategy for representing molecules mathematically is through the use of graphs, whose nodes and edges 

correspond to atoms and bonds or interatomic distances, respectively. By performing multiple convolution operations on 

a graph, each node can influence other, increasingly distant, nodes. The use of graph neural networks has recently shown 

great promise in the development of improved atomistic force fields, trained on quantum mechanical calculations [1]. On 

the other hand, the implementation of ML for the generation of coarse grained (CG) mapping schemes [2], [3], and CG 

force fields required for developing hierarchical multiscale modelling schemes [4] on the basis of atomistic simulations is 

a less explored topic, and their application to the study of complex bulk systems is still rare [2],[5]. 

A main advantage of ML models in the context of molecular simulations is that they are endowed with higher flexibility 

and expressive character compared to traditional CG models. Thus, they are potentially more capable of representing 

complex energy hypersurfaces and capturing many-body interactions that cannot be accurately modelled with traditional 

CG force fields using predefined mathematical functions. 

In this work, we adopted Graph Convolutional Neural Network (GCNN) architectures, as proposed by Schütt et al. [5], 

[6], to develop CG Machine Learned potentials for bulk liquid systems, implementing a strategy that includes a force-

matching scheme [7]. We analyzed the effect of model size and hyperparameters on the thermodynamic, structural, and 

dynamical properties of benzene liquid system. The effect of these aspects on the simulations performed with a resulting 

NN CG potential is rarely discussed in the existing literature. However, in several cases, unphysical behavior is observed, 

both in terms of structure and of dynamics of the systems, that could not be straightforwardly correlated with the 

accuracy achieved during the training process. The effect of model size, hyperparameters, and loss function definitions 

was explored. The obtained results and observations can serve as a constructive reference of future works for the 

identification of challenges and difficulties in the domain of ML-based CG force field development and inspire additional 

mitigation measures. 

 

2 METHODOLOGY 

2.1 Force Matching 

In this work, a force matching scheme has been adopted for the determination of the CG potential. This method, 

introduced by Ercolessi and Adam [8], involves the minimization of the difference between the atomistic forces, 𝐅A ∈ ℝ3n 

(where n is the number of atoms), projected on the CG sites, and the forces predicted by the CG model, 𝐅CG ∈ ℝ3N, for the 

N number of CG sites having coordinates 𝐱𝑖 : 

𝜒2 = 〈[𝐅CG(𝐱𝑖) − ℳ (𝐅A(𝐫𝑗))]
2

〉 

ℳ is the mapping operator between the atomistic and the CG space, 𝐫𝑗 are the atomistic coordinates and the brackets 〈… 〉 

denote average over CG degrees of freedom and the number of sampled atomistic configurations. 

This approach does not include structural information during the fitting, therefore, the ability of a CG model to 

represent the structure is a true test of its quality and an important characteristic that can be used for the comparison 

among different models. 

2.2 Local environment representation and SchNet architecture 

A key step in the development of ML methods for molecular modelling is the transformation of the coordinates of the 

system into input features for the ML model. In general, a transformation of the coordinates into a suitable descriptor 

must provide invariance with respect to translation, rotation, and permutation of the particles’ order. Moreover, it is 

important to have a descriptor whose size does not depend on the number of particles in the system. Thereby, the 

resulting ML model is independent of system size and can be efficiently deployed to larger systems, while having been 

trained on data for systems of smaller size. 

Rather than constructing ad hoc a suitable feature representation, more general and transferable strategies have been 

proposed, which consist of learning the local representation instead, together with the desired property, through a ML 

model. One pioneering effort in this regard is known as SchNet [6], and this idea was implemented utilizing a GCNN 

architecture. For a detailed description of the SchNet architecture, the following references are recommended: [6], [9]. 

The main features are recalled here briefly. The model was initially utilized for the migration from the quantum 
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mechanical level to the atomistic one, but its application can be extended for the study of molecular systems at the CG 

level as well [10]. 

Each particle is represented through a feature vector, which is initialized to distinguish between the particle chemical 

identities (embedding layer). The feature is then updated in each neural network layer depending on the chemical 

environment, by performing continuous convolutions across the particle neighborhoods, optimizing the convolutional 

filter weights during the training (convolutional layers). Afterwards, a fully connected section is included (readout 

layers). A sequence of continuous convolution layers and readout layers constitutes a SchNet “block”. Multiple blocks can 

be utilized in series to define the full network architecture. A schematic depiction of the procedure is given in Fig. 1. 

The output found at the end of the blocks can be interpreted as a learned feature representation, which encodes the 

many-body information from the particle neighborhood required to predict the target property. Finally, a fully connected 

(dense) section transforms the fingerprints into the final scalar output, which is interpreted as a per-particle energy 

contribution. This local decomposition ensures invariance of the ML potential architecture to the total number of atoms. 

All energy contributions are summed to obtain the total energy (𝛴𝑖�̂�𝑖),, which is then differentiated with respect to the 

positions of the particles to predict the force acting on each particle. These are the target properties for the network 

training. During the network optimization the mean squared difference between the predicted forces and the forces 

associated with the molecular dynamics (MD) trajectory considered as input is minimized, using the following loss 

function 𝐿: 

𝐿 =
1

3N
∑ {[−𝛻𝐱𝑖

(𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥)] − ℳ (𝐅A(𝐫𝑗))}
2

N

𝑖

 

where N is the total number of CG particles, ℳ (𝐅A(𝐫𝑗)) is the force acting on the CG particle at position 𝐱𝑖 , obtained from 

the atomistic MD simulation, mapped to the CG space, while the term in square brackets is the force acting on the particle 

at position 𝐱𝑖  predicted by the GCNN. The term 𝑈𝑒𝑥  included in the loss function is defined and explained in Section 2.3. 

 

 

Figure 1: Schematic representation of the architecture for the per-particle energy prediction. 
The input information is the particle type and the interparticle distances in the neighborhood  

of each atom (within a cutoff radius). 
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2.3 Excluded volume prior 

During the CG simulations with the trained ML force field, when parts of the coordinate space are reached that are very 

different from any point in the training set, the network is unable to reproduce the correct physical behavior which it has 

never been exposed to during training. In particular, the atomistic force field used to produce the training data ensures 

that the energy will become steeply very high when the configuration assumed by the system is departing from physical 

states, for example when atoms are moving too close to each other. These regions are not sampled in the underlying 

atomistic MD simulations, and therefore training data are missing for those regions of the configuration space. If such 

conditions occur during simulations performed with a neural network trained only on physically valid configurations, 

unphysical behavior can be produced, such as bonds overstretching, or atoms overlapping.  

To mitigate this issue, several authors suggest to introduce regularization terms [10], related to non-bonded repulsion 

terms, to impose excluded volume effects, and intramolecular priors on specific geometric features, such as bonds and 

angles. The purpose of including such constraints is to ensure that the system energy will be driven to infinity if 

unphysical states occur that are not within the training data. For the system considered here, consisting of single-bead 

molecules, only excluded volume effects are relevant. In particular, an excluded volume energy term based on the 

pairwise distances between the moieties, is considered: 

𝑈𝑒𝑥 = ∑ ∑ (
𝜎

‖𝒙𝑖 − 𝒙𝑗‖
)

𝑛𝑒𝑥
𝑁

𝑗=𝑖

𝑁−1

𝑖=1
 

where 𝜎 and 𝑛𝑒𝑥  are hyperparameters of the model, for which suitable values must be identified. This term is added to the 

total energy predicted by the GCNN, prior to differentiation. 

 

3 RESULTS AND DISCUSSION 
Tests were performed on three independent liquid benzene systems containing 500 molecules each, at 300 K (Fig. 2). The 

systems were initially equilibrated through a 1 ns NPT MD simulation, and then a 4 ns NVT run at the average equilibrium 

density was conducted. The first ns of the run was discarded, and, after that, 3000 configurations, saved every 104 ps, 

were retained for each system, and constitute the training data for the force field development. Each benzene molecule 

was mapped into a single CG site. This choice allows to study the application of the ML method to a CG system that 

contains only intermolecular interactions, which are the most complex to represent and the ones for which the expressive 

power of a NN model could provide the greater advantage compared to traditional CG models. 

NVT CG simulations with the ML potentials were conducted at 300 K using the ASE integrator [11]. 

 

 

Figure 2: System studied: 500 molecules of liquid benzene at 300 K mapped onto one CG bead 
each (light blue spheres). 
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3.1 Hyperparameter values 

The SchNet model contains several hyperparameters. In the following list, they are reported together with the values 

tested in this study:  

• Feature size: 120, 240 

• Convolutional filter size: 40, 80 

• Number of filters: 128, 256 

• Interaction blocks: 1, 2, 3 

• Learning rate: 10–4 

• Decay ratio: 0.5 

• Batch size: 15 

• Cut-off distance (Å): 7, 12  

• Activation function: Tanh, Shifted Softplus 

• Number of epochs: 100 – 2000 

• Number of samples: 9000 

• Excluded volume diameter 𝜎 (Å): 3, 4, 5, 6, 7, 8, 9 

• Excluded volume exponent 𝑛𝑒𝑥: 5, 7, 9 

80% of the data was used as a training set, while the remaining 20% as test set. The molecular configurations from the 

MD trajectory were randomly assigned to either set, and shuffled during the training. 

Only few tests were conducted utilizing a cutoff of 12 Å. Compared to the case of 7 Å, models trained with this cutoff 

often exhibited overfitting behavior, with the loss over the test set becoming larger as the number of epochs increased. All 

results presented in the following sections were obtained with a cutoff of 7 Å. No hyperparameter optimization was 

performed for the learning rate, the decay ratio and the batch size.  The effects manifested upon variation of the 

remaining hyperparameters are presented hereafter, through the comparison of selected results. 

3.2 Model size and simulation stability 

Several groups of tests were performed varying one of the hyperparameters related to the model size, namely either the 

feature size, filter size, number of filters, or number of blocks, to evaluate the effect on the training process and 

performance during the simulations. In the results shown in Fig. 3, the case in which the number of blocks is varied is 

shown. The following hyperparameters were constant across the tests presented in this section: 

• Feature size: 240 

• Convolutional filter size: 80 

• Number of filters: 256 

• Activation function: Shifted Softplus  

• Excluded volume diameter 𝜎 (Å): 5 

• Excluded volume exponent 𝑛𝑒𝑥: 7 

The number of blocks was changed according to the legend in Fig. 3.  

As can be observed in Fig. 3a, for tests A, B and C, the effect on the final loss of changing the number of blocks from 3 to 

1 during training, is very limited. All tests reached a similar value of the loss function and this was observed also upon 

changing other hyperparameter values related to model size. This was observed also by Wang et al. [10], who reported 

the existence of a lower limit in the expected prediction error during the ML-based CG force field development procedure. 

The observed lower limit in each case is associated with the CG mapping level, and it is related to the multiplicity of 

atomistic configurations that map into the same CG configurations. Indeed, the CG level was the same for all the tests in 

this work. 

When performing MD simulations with the trained models, very different behaviors are manifested (Fig. 3b). In 

particular, the larger models (higher number of blocks) exhibited lower kinetic energy fluctuations, while the smallest 

one had a divergent behavior: the very high temperature peaks correspond to fast in place oscillations of the molecules, 

which eventually fade, leaving the system in a “frozen” state. Husic et al. [12] suggested that the use of the hyperbolic 

tangent as activation function, instead of the shifted sotfplus one, could mitigate instabilities, however this was not the 

case for the system investigated in this study. 

Case D is a test performed with the same hyperparameters as A, but different network initialization. In this case, the 

behavior was not reproducible between the two tests. Nonetheless, it seems that this is not a frequent occurrence: in the 

majority of cases the results are reproducible among tests performed with the same hyperparameters, and either they all 

produce stable behavior (non-divergence of the kinetic energy), or they all produce unstable behavior during the 

simulations (divergence of the kinetic energy), regardless of the network initialization.  
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It is interesting to include test D in the comparison because it shows the typical features of overfitting, with test set 

loss increasing as the training continues. Moreover, this test shows that there does not appear to be a clear correlation 

between the final loss level reached during the training and the amplitude of the kinetic energy oscillations. 

These results imply that, in order to evaluate the fitness of a CG model, even roughly, it is not sufficient to solely 

observe the training output, but it is necessary to perform also a CG simulation with it, which is a computationally 

expensive step. On a positive note, it appears that the problematic behavior is manifested early on during the test CG 

simulations, therefore short runs suffice to retain or discard a trained model. Though not shown here, it was verified that 

the system that exhibited stability for these preliminary short simulations remained stable also during simulations 25 

times longer. Moreover, independent simulations performed with the same NN force field were reproducible in terms of 

thermodynamic, structural and dynamical properties.  

In addition to kinetic energy stability, it is possible to compare the simulated systems also in terms of structure, by 

computing the radial distribution functions between the centers of mass of the CG particles. The target distribution 

calculated from the atomistic data is shown in black in Fig. 2c. As can be seen, there is an inverse correlation between the 

amplitude of the kinetic energy oscillations and the emergence and sharpness of an unrealistic feature in the structure at 

approximately 3 Å. The corresponding molecular models show an uneven occupation of space, with void regions that are 

not expected in a liquid system. The origin of this feature or its relationship with the model architecture is not clear yet. 

Modifications to the method that improve the structure prediction will be presented in the section that follows. The same 

considerations made here about the effect of the number of blocks are valid also for the effect of the other 

hyperparameters related to model size. 

3.3 Excluded volume prior effect 

Fig. 4 reports the effect of the model hyperparameters related to the excluded volume prior, while keeping all the others 

constant:  

1. Feature size: 240 

2. Convolutional filter size: 80 

3. Number of filters: 256 

4. Activation function: hyperbolic tangent  

5. Number of blocks 2 

The excluded volume σ was changed according to the legend in Fig. 4, while three values of 𝑛𝑒𝑥  are shown in the 

subfigures. 

Changing the values of the excluded volume hyperparameters has a notable effect on the trend of the loss during 

training: higher nex and higher σ require longer training to reach convergence in the loss value and, also, exhibit a less 

smooth trend of the loss during the optimization. Nevertheless, the final values of the loss still fall within a very narrow 

range. From all the models reported in Fig. 4, only two resulted in stable simulations, namely 𝑛𝑒𝑥  = 7 and 𝜎 = 6 Å, and 𝑛𝑒𝑥  

= 9 and 𝜎 = 6 Å, hinting at the fact that possibly higher sigma values should be explored for this system. However, the 

systems simulated with these models still exhibited the unrealistic structural feature shown in Fig. 3c. 

It was found that the structural representation can be improved if the loss function is modified to include also the 

squared deviation between the energy of the system predicted by the network and the intermolecular potential energy 

from the atomistic simulation, appropriately weighted with respect to the force component. As shown in Fig. 5, a model 

trained in this way with 𝑛𝑒𝑥  = 7 and 𝜎 = 6 Å displayed stability in the kinetic energy and a more realistic structure. 

Moreover, consistent results were obtained by utilizing the model to simulate systems of different size than the one used 

for training, which is a necessary consistency trait for the exploitation of the CG potentials in simulating various system 

sizes, especially larger ones. Future efforts will be devoted to further investigating this promising direction and refining 

the results, also in comparison with predictions of previous methodologies for the development of CG potentials for the 

benzene systems that do not incorporate ML schemes [13]. To this aim, additional testing of the model hyperparameters 

that affect the structural representation will be necessary.  
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Legend A B C D 

Number of blocks 3 2 1 3 

 

 

 

 

Figure 3: Effect of varying the number of blocks on 
(a) the final loss level, (b) simulation stability and (c) 
radial distribution function of the simulated system. 

 
Legend E F G H I 

Excluded volume 𝜎 (Å) 2 3 4 5 6 

 

 

 

 

Figure 4: Effect of varying the excluded volume 

hyperparameters on the model training. 
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Figure 5: Results obtained with energy inclusion in the loss function for (a) training 
performance, (b) stability of the kinetic energy during the simulation and (c) structure. 

 

4 CONCLUSIONS 
In this work, the application of a powerful ML architecture was implemented for the generation of CG potentials of a bulk 

liquid system, i.e. benzene in a single-bead representation. We conducted a systematic investigation of the effect of the 

model hyperparameters on the results and highlighted challenges related to the difficulty of assessing the efficiency of a 

trained model solely from the performance during training. In fact, models trained with different hyperparameters can 

reach a very similar value for the loss function, and yet exhibit very different and in many cases unphysical behavior in 

terms of structure and/or dynamics during CG MD simulations. 

Extensive search of the hyperparameters space is necessary to identify a suitable combination, which may be system 

specific. It would be highly beneficial, in terms of computational effort required to generate a viable model, if part of this 

search could be avoided. In this regard, it is envisioned that the introduction of the excluded volume prior could be 

bypassed by enriching the training dataset with samples of unphysical configurations. The appropriate generation and 

incorporation of such instances in the model might prove to be a not trivial task and cause new challenges to emerge.  

This specific area of research and application is nascent and few reports exist about the application of ML CG models in 

molecular simulations, therefore it is of great importance to reveal and discuss, along with the advancements, also the 

difficulties, challenges and unexpected or problematic behavior that may be observed. Disclosing such information will 

aid the interdisciplinary scientific community to accumulate valuable knowledge and experience, in order to engage in the 

search for improved strategies that will accelerate discovery and expand successful applications. 
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