The Epitaxy and Surface Science Lab (ESSL) started its operation as a Molecular Beam Laboratory in year 2000 and has 20 years history of research on materials and devices for advanced CMOS and post CMOS nanoelectronics. Headed by Dr. A. Dimoulas, the lab raised around 8 million Euros from EU and national competitive projects, which allowed building new infrastructure worth of 2 million Euro and supporting a team of 9-10 members on average consisting of a senior scientist (Dr. A. Dimoulas), postdoctoral research associates and PhD students. Two of the postdoctoral research associates have received prestigious awards from the National Scholarships Foundation (ΙΚΥ) and the national HFRI (ΕΛΙΔΕΚ) to implement their research plans.

The research team has established:

  1. scientific excellence receiving two ERC grants (Advanced and Proof of Concept), as well as Marie Curie and FET grants.  Dr. Dimoulas has also received a Chair of Excellence appointment at CEA and the U. Grenoble Alpes for the development of MBE growth of 2D Materials and,
  2. leadership in European research by coordinating a number of large Industrial leadership (ICT) and Scientific Excellence (FET) European projects

The last ten years, the lab has become a unique facility in Greece for Surface Science encompassing a number of surface analytic techniques such as Scanning Tunneling Microscope (STM), Reflection High-Energy Electron Diffraction (RHEED), X-ray and Ultraviolet Photoelectron Spectroscopy (XPS/UPS) and Angle-Resolved Photoelectron Spectroscopy (ARPES), all integrated with the MBE chamber for in-situ characterization of the grown thin films. ARPES is the only such technique available in Greece and among the few existing in European labs and around the work (except from the large-scale synchrotron facilities), which enables the imaging of the electronic band structure of crystalline solids. The lab is complemented by (a) a low T (5-320K) Kerr Microscopy and Magnetometry, (b) a CVD system equipped with a 4-inch cold wall chamber for the growth of graphene and for rapid thermal processing, (c) an electrical measurements facility consisting of a semiconductor device analyzer (Keysight B1500) equipped with a random waveform generation and fast measurement unit, a ferroelectric thin film tester, current source, nanovoltmeter and lock-in amplifier for Ηall-effect measurements, an LCR bridge for capacitance measurements and a micromanipulator stage for electrical evaluation

of devices in the range 4-475K, (d) a chemical hood for simple device processing and (e) a high-performance workstation for first principles calculations based on Density Functional Theory (DFT).

In brief, the main achievements of the lab and its contribution to the worldwide research are:

  1. Development of Germanium MOS technology for the scaling of advanced CMOS (widely cited), which has been currently extended to the Ge MFS technology targeting Hf(Zr)O2-based scalable and Si-compatible ferroelectric nonvolatile memories for IoT and neuromorphic computing
  2. First investigation in Europe of elemental 2D materials silicene and germanene (“cousins” of graphene), as well as the 2D graphitic AlN material (widely cited) 
  3. Development of the MBE growth of 2D transition metal dichalcogenide materials, which has been currently extended to the investigation of non-trivial topological properties (Topological Insulators, Weyl and Dirac semimetal properties) and their combination with 2D van der Waals ferromagnets CrTe2 and Fe3GeTe2 hosting skyrmions

General caption of the lab

Evaluation by external experts:
The ESSL team has been very positively evaluated by external experts, during the INN evaluation process.
Among others, the experts wrote:
“…This group should make a role model for the structure, mentality and quality of research for the sort of groups INN should aim to build.”
“This group has the closest structure one typically finds in highly performing research groups abroad, i.e. one single PI with several postdocs and PhD students and an outstanding track record of funding, research output and state-of-the-art facilities. The group has demonstrated capacity and potential to evolve and change fields systematically, building upon previous expertise and knowledge but always expanding into new directions. This is a very healthy approach for high-quality research and the group has very strong potential for growth in the future.”
To read the whole report, please follow this link.

Edge intelligence: materials and devices


Epitaxial topological 2D materials for information processing and storage

Athanasios Dimoulas
#Research Director See Details
Alexandros El Sachat
#Postdoctoral Researcher See Details
Nikolaos Kelaidis
#Research Associate See Details
Polychronis Tsipas
#Research Associate See Details
Sotirios Fragkos
#PhD candidate See Details
Elli Georgopoulou-Kotsaki
#PhD candidate See Details
Akylas Lintzeris
#PhD candidate See Details
Nikitas Siannas
#PhD candidate See Details
Evgenia Symeonidou
#PhD candidate See Details
Christina Zacharaki
#PhD candidate See Details
Skip to content